Topics & Sample Problems MC50F (USA(J)MO Fundamentals)

Contents

Part-II	3
MC50F Geometry	3
MC50F Number Theory	13

Part-II

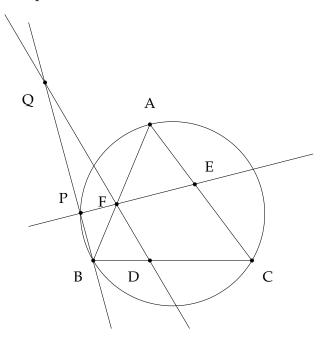
MC50F Geometry

Chapter 1: Angle Chasing

- Developing basic angle chasing techniques
- Incenters, orthocenters, cyclic quadrilaterals
- Directed angles

Sample Problem:

(ISL-2010-G1) Let *ABC* be an acute triangle with *D*, *E*, *F* the feet of the altitudes lying on *BC*, *CA*, *AB* respectively. One of the intersection points of the line *EF* and the circumcircle is *P*. The lines *BP* and *DF* meet at point *Q*. Prove that AP = AQ.

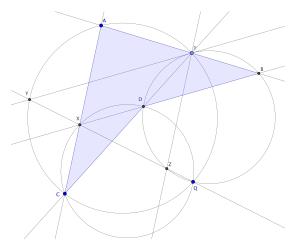


Chapter 2: Similar Triangles

• Using spiral similarity and regular similar triangles to solve geometry problems

Sample Problem:

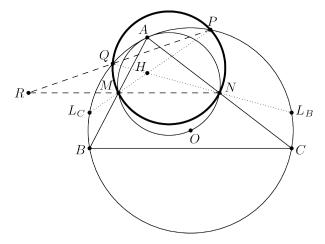
(USA-TST-2007-1) Circles ω_1 and ω_2 meet at *P* and *Q*. Segments *AC* and *BD* are chords of ω_1 and ω_2 respectively, such that segment *AB* and ray *CD* meet at *P*. Ray *BD* and segment *AC* meet at *X*. Point *Y* lies on ω_1 such that *PY* \parallel *BD*. Point *Z* lies on ω_2 such that *PZ* \parallel *AC*. Prove that points *Q*, *X*, *Y*, *Z* are collinear.



Chapter 3: Power of a Point

- Defining positive/negative similarity and directed lengths
- Defining power, radical axes, and radical centers

(TSTST-2011-4) Acute triangle *ABC* is inscribed in circle ω . Let *H* and *O* denote its orthocenter and circumcenter, respectively. Let *M* and *N* be the midpoints of sides *AB* and *AC*, respectively. Rays *MH* and *NH* meet ω at *P* and *Q*, respectively. Lines *MN* and *PQ* meet at *R*. Prove that $OA \perp RA$.



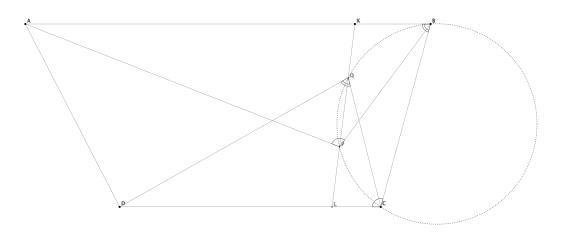
Chapter 4: Homothety

• Using homothety to solve olympiad geometry problems

(ISL-2006-G2) Let *ABCD* be a trapezoid with parallel sides AB > CD. Points *K* and *L* lie on the line segments *AB* and *CD*, respectively, so that AK/KB = DL/LC. Suppose that there are points *P* and *Q* on the line segment *KL* satisfying

 $\angle APB = \angle BCD$ and $\angle CQD = \angle ABC$.

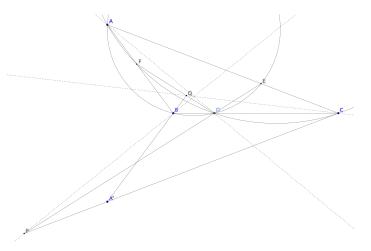
Prove that the points *P*, *Q*, *B* and *C* are concyclic.



Chapter 5: Collinearity

• Proving collinearity with Menelaus, Pascal, and Desargues' theorems

(RMM-2016-1) Let *ABC* be a triangle and let *D* be a point on the segment *BC*, $D \neq B$ and $D \neq C$. The circle *ABD* meets the segment *AC* again at an interior point *E*. The circle *ACD* meets the segment *AB* again at an interior point *F*. Let *A'* be the reflection of *A* in the line *BC*. The lines *A'C* and *DE* meet at *P*, and the lines *A'B* and *DF* meet at *Q*. Prove that the lines *AD*, *BP* and *CQ* are concurrent (or all parallel).



Chapter 6: Concurrency

- Proving concurrency using Ceva and Brianchon's theorems
- Isogonal and isotomic conjugates

Sample Problem:

(ISL-2000-G3) Let *O* be the circumcenter and *H* the orthocenter of an acute triangle *ABC*. Show that there exist points *D*, *E*, and *F* on sides *BC*, *CA*, and *AB* respectively such that

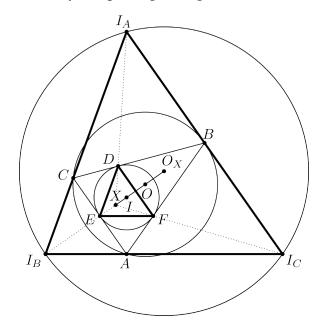
OD + DH = OE + EH = OF + FH

and the lines *AD*, *BE*, and *CF* are concurrent.

Chapter 7: Circles of the Triangle

• Nine-point circle, incircle, excircles and their properties

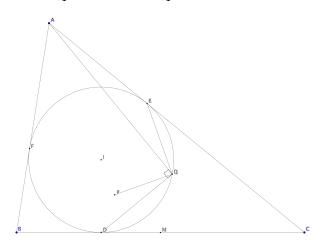
(Vietnam-TST-2003-5) Given a triangle *ABC*. Let *O* be the circumcenter of this triangle *ABC*. Let *H*, *K*, *L* be the feet of the altitudes of triangle *ABC* from the vertices *A*, *B*, *C*, respectively. Denote by A_0 , B_0 , C_0 the midpoints of these altitudes *AH*, *BK*, *CL*, respectively. The incircle of triangle *ABC* has center *I* and touches the sides *BC*, *CA*, *AB* at the points *D*, *E*, *F*, respectively. Prove that the four lines A_0D , B_0E , C_0F and *OI* are concurrent. (When the point *O* concides with *I*, we consider the line *OI* as an arbitrary line passing through *O*.)



Chapter 8: Configurations-I

• Examining and proving facts about common olympiad geometry configurations

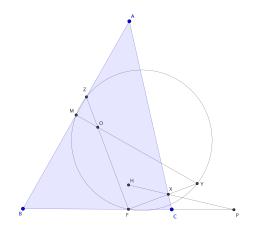
(USA-TST-2015-1) Let *ABC* be a non-isosceles triangle with incenter *I* whose incircle is tangent to \overline{BC} , \overline{CA} , \overline{AB} at *D*, *E*, *F*, respectively. Denote by *M* the midpoint of \overline{BC} . Let *Q* be a point on the incircle such that $\angle AQD = 90^\circ$. Let *P* be the point inside the triangle on line *AI* for which MD = MP. Prove that either $\angle PQE = 90^\circ$ or $\angle PQF = 90^\circ$.



Chapter 9: Configurations-II

• Examining and proving facts about other common olympiad geometry configurations

(BMO-2008) Given a scalene acute triangle *ABC* with *AB* > *AC* let *F* be the foot of the altitude from *A*. Let *P* be a point on *BC* different from *B* so that BF = PF. Let *H*, *O*, *M* be the orthocenter, circumcenter of $\triangle ABC$ and the midpoint of *AB* respectively. Let *X* be the intersection of *CA* and *HP*, and let *Y* be the intersection of *OM* and *FX* and let *OF* intersect *AB* at *Z*. Prove that *F*, *M*, *Y*, *Z* are concyclic.



Chapter 10: Configurations-III

• Examining and proving facts about symmedians and mixtilinear incircles

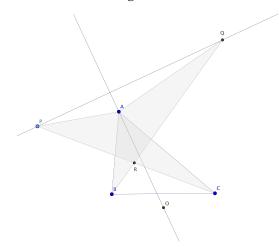
Sample Problem:

(EGMO-2013-5) Let Ω be the circumcircle of the triangle *ABC*. The circle ω is tangent to the sides *AC* and *BC*, and it is internally tangent to the circle Ω at the point *P*. A line parallel to *AB* intersecting the interior of triangle *ABC* is tangent to ω at *Q*. Prove that $\angle ACP = \angle QCB$.

Chapter 11: Complex Numbers

• Developing techniques to solve olympiad geometry problems with complex numbers

(USA-TST-2006-6) Let *ABC* be a triangle. Triangles *PAB* and *QAC* are constructed outside of triangle *ABC* such that AP = AB and AQ = AC and $\angle BAP = \angle CAQ$. Segments *BQ* and *CP* meet at *R*. Let *O* be the circumcenter of triangle *BCR*. Prove that $AO \perp PQ$.



Chapter 12: Trigonometry

- Using trigonometry to solve olympiad geometry problems
- Trig Ceva, Law of Sines/Cosines, Ptolemy

(USA-TST-2006-6) Let *ABC* be a triangle. Triangles *PAB* and *QAC* are constructed outside of triangle *ABC* such that AP = AB and AQ = AC and $\angle BAP = \angle CAQ$. Segments *BQ* and *CP* meet at *R*. Let *O* be the circumcenter of triangle *BCR*. Prove that $AO \perp PQ$.



MC50F Number Theory

Chapter 1: Divisibility & Euclidean Algorithm

- Using divisibility and Euclidean Algorithm to solve number theory problems
- Bezout, GCD/LCM, Fundamental Theorem of Arithmetic

Sample Problem:

(Classic) Suppose that an infinite sequence of positive integers a_1, a_2, \ldots satisfies the property $gcd(a_m, a_n) = gcd(m, n)$ for all $m \neq n \geq 1$. Prove that $a_n = n$ for all $n \geq 1$.

Chapter 2: Modular Arithmetic

- Developing modular arithmetic techniques
- Fermat's Little Theorem, Euler's Totient Function, Wilson's Theorem

Sample Problem:

(Russia-2007) Let $p \ge 5$ be a prime. Show that the numbers $1!, 2!, \ldots, (p-1)!$ leave at least \sqrt{p} different residues modulo p.

Chapter 3: Diophantine Equations

• Solving Diophantine Equations using divisibility/modular arithmetic

Sample Problem:

(USAJMO-2011-1) Find, with proof, all positive integers *n* for which $2^n + 12^n + 2011^n$ is a perfect square.

Chapter 4: Chinese Remainder Theorem

• Using the Chinese Remainder Theorem constructively to solve number theory problems

(USAMO-1991) Show that, for any fixed integer $n \ge 1$, the sequence

 $2, 2^2, 2^{2^2}, 2^{2^2}, \dots \pmod{n}$

is eventually constant. [The tower of exponents is defined by $a_1 = 2$, $a_{i+1} = 2^{a_i}$. Also $a_i \pmod{n}$ means the remainder which results from dividing a_i by n.]

Chapter 5: p-Adic Valuation and LTE

- Defining and proving basic properties about p-adic valuation
- Legendre's Formula and Lifting the Exponent

Sample Problem:

(BAMO-2018-4) Suppose that *a*, *b*, *c* are integers with the property that

$$\frac{a}{b} + \frac{b}{c} + \frac{c}{a}$$

is an integer. Show that *abc* is a perfect cube.

Chapter 6: Order

- Defining and proving basic properties about order
- Thue's Lemma and Fermat's Sum of Two Squares Theorem

Sample Problem:

(ISL-2006-N5) Find all integer solutions of the equation

$$\frac{x^7 - 1}{x - 1} = y^5 - 1.$$

Chapter 7: Primitive Roots

- Defining and developing properties about primitive roots
- Number of primitive roots modulo n

Sample Problem:

(Romania-TST-2008) Find the greatest common divisor of the numbers

$$2^{561} - 2, 3^{561} - 3, \dots, 561^{561} - 561.$$

Chapter 8: Quadratic Residues

- Defining quadratic residues/Legendre symbols
- Euler's Criterion
- Proving the Quadratic Reciprocity Law

Sample Problem:

(Taiwan-2000) Suppose that positive integers *m* and *n* satisfy $\varphi(5^m - 1) = 5^n - 1$. Show that gcd(m, n) > 1.

Chapter 9: Integer Polynomials-I

• Using Schur's Theorem and Hensel's Lemma to solve number theory problems

Sample Problem:

(IMO-2006-5) Let P(x) be a polynomial of degree n > 1 with integer coefficients and let k be a positive integer. Consider the polynomial $Q(x) = P(P(\ldots P(P(x)) \ldots))$, where P occurs k times. Prove that there are at most n integers t such that Q(t) = t.

Chapter 10: Integer Polynomials-II

- Defining divisibility, GCD, and Bezout for polynomials
- Newton's Theorem, Lagrange Interpolation

Sample Problem:

(USA-TST-2010) Let *P* be a polynomial with integer coefficients such that P(0) = 0 and

$$gcd(P(0), P(1), P(2), \ldots) = 1.$$

Show there are infinitely many n such that

$$gcd(P(n) - P(0), P(n+1) - P(1), P(n+2) - P(2), ...) = n.$$

Chapter 11: Arithmetic Functions

- Defining arithmetic functions and listing basic arithmetic functions
- Dirichlet Convolution and Möbius Inversion

(ISL-1989) Suppose the sequence a_1, a_2, \ldots satisfies

$$\sum_{d|n} a_d = 2^n$$

Show that $n \mid a_n$ for all n.

Chapter 12: Advanced Diophantine Equations

• Using algebraic and number theoretic methods to solve general Diophantine equations

Sample Problem:

(Kolmogorov-Cup) Solve in integers *a*, *b*, *c*, *n* the equation $a^2 + b^2 + c^2 = 3n(ab + bc + ca)$.