Topics \& Sample Problems

MC35F (AMC 10/12 Advanced Fundamentals)

Contents

Part-I 3
MC35F Algebra 3
MC35F Counting 8

Part-I

MC35F Algebra

Chapter 1: Arithmetic

- Word problems using arithmetic with integers, fractions, decimals, and percent
- Decimals with repeating/terminating digits
- Rational/Irrational numbers

Sample Problem:

(BMT-2018-Team-5) How many integers can be expressed in the form:

$$
\pm 1 \pm 2 \pm 3 \pm 4 \cdots \pm 2018 ?
$$

Chapter 2: Exponents \& Radicals

- Properties of exponents and radicals
- Negative/fractional exponents
- Rationalizing the denominator, simplifying radicals
- Using conjugates of radicals

Sample Problem:

(Lehigh MC-2016-34) What is the smallest integer larger than

$$
(\sqrt{5}+\sqrt{3})^{6} ?
$$

Note that $3.872<\sqrt{15}<3.873$.

Chapter 3: Word Problems \& System of Equations

- Word problems, systems of equations in two or more variables

Sample Problem:

(AMC10-2002-B20) Let a, b, and c be real numbers such that

$$
a-7 b+8 c=4 \text { and } 8 a+4 b-c=7
$$

Then $a^{2}-b^{2}+c^{2}$ is
(A) 0
(B) 1
(C) 4
(D) 7
(E) 8

Chapter 4: Time, Travel, Work

- Distance $=$ Rate \times Time, average speed
- Harmonic mean
- Relative speed
- Rate/Work Problems

Sample Problem:

(AMC10-2012-A19) Paula the painter and her two helpers each paint at constant, but different, rates. They always start at 8:00 AM, and all three always take the same amount of time to eat lunch. On Monday the three of them painted 50% of a house, quitting at 4:00 PM. On Tuesday, when Paula wasn't there, the two helpers painted only 24% of the house and quit at 2:12 PM. On Wednesday Paula worked by herself and finished the house by working until 7:12 P.M. How long, in minutes, was each day's lunch break?
(A) 30
(B) 36
(C) 42
(D) 48
(E) 60

Chapter 5: Sequences-1

- Mean, median, mode, range
- Arithmetic and geometric sequences
- Geometric series formula and derivation

Sample Problem:

(AMC10-2000-A23) When the mean, median, and mode of the list $10,2,5,2,4,2, x$ are arranged in increasing order, they form a non-constant arithmetic progression. What is the sum of all possible real values of x ?
(A) 3
(B) 6
(C) 9
(D) 17
(E) 20

Chapter 6: Sequences-2

- Recurrent sequences
- Finding the general term via patterns

Sample Problem:

(Lehigh MC-2008-33) A Fibonacci-like sequence of numbers is defined by $a_{1}=1, a_{2}=3$, and for $n \geq 3, a_{n}=a_{n-1}+a_{n-2}$. One can compute that $a_{29}=1149851$ and $a_{30}=1860498$. What is the value of $\sum_{n=1}^{28} a_{n}$?

Chapter 7: Functions \& Operations

- Definitions of function, domain, codomain/range
- Injective, surjective, bijective functions
- Inverse functions
- Operators
- Simple functional equations

Sample Problem:

(Lehigh MC-2002-36) If $2 f(x)+f(1-x)=x^{2}$ for all x, then $f(x)=$

Chapter 8: Polynomials-1

- Polynomials of a single variable; definitions of degree, root, etc.
- Solving for the roots of a quadratic by factoring, completing the square, or quadratic formula
- Rational root theorem
- Fundamental theorem of algebra
- Less emphasis on complex numbers (Chapter 12)

Sample Problem:

(Aaron Lin, David Zhu) Suppose P is a monic quartic polynomial (i.e. a degree-4 polynomial with leading coefficient 1) such that $P(1)=1, P(2)=4, P(3)=9, P(4)=16$. Find $P(5)$.

Chapter 9: Polynomials-2

- Generalized Vieta's formulas
- Manipulation of symmetric sums to produce other expressions

Sample Problem:

(HMMT Nov-2016-Guts-27) Let $r_{1}, r_{2}, r_{3}, r_{4}$ be the four roots of the polynomial $x^{4}-4 x^{3}+8 x^{2}-$ $7 x+3$. Find the value of

$$
\frac{r_{1}^{2}}{r_{2}^{2}+r_{3}^{2}+r_{4}^{2}}+\frac{r_{2}^{2}}{r_{1}^{2}+r_{3}^{2}+r_{4}^{2}}+\frac{r_{3}^{2}}{r_{1}^{2}+r_{2}^{2}+r_{4}^{2}}+\frac{r_{4}^{2}}{r_{1}^{2}+r_{2}^{2}+r_{3}^{2}} .
$$

Chapter 10: Trigonometry

- Review of trigonometric functions (sin, cos, tan, csc, sec, cot)
- More emphasis on trigonometric identities (addition and multiple-angle formulae)
- Solving algebra problems via trig substitution

Sample Problem:

(BMT-2016-Analysis-5) Find

$$
\frac{\tan 1^{\circ}}{1+\tan 1^{\circ}}+\frac{\tan 2^{\circ}}{1+\tan 2^{\circ}}+\cdots+\frac{\tan 89^{\circ}}{1+\tan 89^{\circ}}
$$

Chapter 11: Logarithm

- Definition of a logarithm in base b, simple logarithmic identities (change-of-base formula, addition/subtraction of logarithms)
- Natural logarithms, the number e
- Applications: Binary search, merge sort example

Sample Problem:

(AMC12-2006-B20) Let x be chosen at random from the interval $(0,1)$. What is the probability that

$$
\left\lfloor\log _{10} 4 x\right\rfloor-\left\lfloor\log _{10} x\right\rfloor=0 ?
$$

Here $\lfloor x\rfloor$ denotes the greatest integer that is less than or equal to x.
(A) $\frac{1}{8}$
(B) $\frac{3}{20}$
(C) $\frac{1}{6}$
(D) $\frac{1}{5}$
(E) $\frac{1}{4}$

Chapter 12: Complex Numbers

- More rigorous introduction to complex numbers
- Review of the Fundamental Theorem of Algebra, conjugate root theorem
- Polar form, Euler's formula, de Moivre's formula
- Roots of unity

Sample Problem:
(Yitz Deng) Find the number of complex numbers z such that $z^{2015}=\bar{z}$.

MC35F Counting

Chapter 1: Counting Basics

- Addition/multiplication principles
- Permutations, combinations, binomial coefficients

Sample Problem:

(SMT-2018-General-15) How many ways are there to select distinct integers x, y, where $1 \leq x \leq 25$ and $1 \leq y \leq 25$, such that $x+y$ is divisible by 5 ?

Chapter 2: Casework

- Solving a variety of counting problems using casework
- Use casework to break difficult problems into easier pieces

Sample Problem:

(HMMT Feb-2006-Combinatorics-6) For how many ordered triplets (a, b, c) of positive integers less than 10 is the product $a \times b \times c$ divisible by 20 ?

Chapter 3: Complementary Counting \& Overcounting

- Solving counting problems using the techniques of complementary counting and/or overcounting

Sample Problem:

(HMMT Feb-2008-Guts-6) Determine the number of non-degenerate rectangles whose edges lie completely on the grid lines of the following figure.

Chapter 4: Counting Sets

- Definitions of set, cardinality, union, intersection
- Principle of inclusion-exclusion for two or more sets

Sample Problem:

(HMMT Feb-2010-Combinatorics-1) Let $S=\{1,2,3,4,5,6,7,8,9,10\}$. How many (potentially empty) subsets T of S are there such that, for all x, if x is in T and $2 x$ is in S then $2 x$ is also in T ?

Chapter 5: Counting with Digits

- Solving a variety of counting problems involving digits of a number
- Counting palindromes

Sample Problem:

(AMC12-2008-A21) A permutation $\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right)$ of $(1,2,3,4,5)$ is heavy-tailed if $a_{1}+a_{2}<a_{4}+a_{5}$. What is the number of heavy-tailed permutations?
(A) 36
(B) 40
(C) 44
(D) 48
(E) 52

Chapter 6: Path Counting \& Bijections

- Definitions of injective, surjective, and bijective functions
- Examples of bijections between two infinite sets (e.g. the set of whole numbers and the set of integers)
- Solving counting problems by establishing a bijection

Sample Problem:

(AMC12-2010-A18) A 16-step path is to go from $(-4,-4)$ to $(4,4)$ with each step increasing either the x-coordinate or y-coordinate by 1 . How many such paths stay outside or on the boundary of the square $-2 \leq x \leq 2,-2 \leq y \leq 2$ at each step?
(A) 92
(B) 144
(C) 1568
(D) 1698
(E) 12,800

Chapter 7: Stars and Bars

- Using the stars and bars technique to solve a variety of counting problems

Sample Problem:

(Caleb Ji) How many ways can David pick four of the first twelve positive integers such that no two of the numbers he picks are consecutive?

Chapter 8: Binomial

- Binomial theorem, Pascal's triangle, Sierpinski's triangle
- Various combinatorial identities, such as the hockey stick identity

Sample Problem:

(AMC10-2011-B23) What is the hundreds digit of 2011 ${ }^{2011}$?
(A) 1
(B) 4
(C) 5
(D) 6
(E) 9

Chapter 9: Counting with Recursion

- Solving counting problems by setting up a recursion and/or finding patterns

Sample Problem:

(Lehigh MC-2014-26) How many 10-digit strings of 0?s and 1?s are there that do not contain any consecutive 0 ?s?

Chapter 10: Probability-1

- Basic probability definitions and axioms
- Definitions of complementary events, independence, disjoint events

Sample Problem:

(AMC10-2004-B23) Each face of a cube is painted either red or blue, each with probability $\frac{1}{2}$. The color of each face is determined independently. What is the probability that the painted cube can be placed on a horizontal surface so that the four vertical faces are all the same color?
(A) $\frac{1}{4}$
(B) $\frac{5}{16}$
(C) $\frac{3}{8}$
(D) $\frac{7}{16}$
(E) $\frac{1}{2}$

Chapter 11: Probability-2

- Conditional probability, Bayes' theorem
- Geometric probability

Sample Problem:

(AMC10-2012-A25) Real numbers x, y, and z are chosen independently and at random from the interval $[0, n]$ for some positive integer n. The probability that no two of x, y, and z are within 1 unit of each other is greater than $\frac{1}{2}$. What is the smallest possible value of n ?
(A) 7
(B) 8
(C) 9
(D) 10
(E) 11

Chapter 12: Expected Value

- Expected value and linearity of expectation (for an arbitrary number of events)
- Introduction to state diagrams, Markov chains

Sample Problem:

(Bill Huang) 10 boys and 10 girls sit in a row. Let x be the number of adjacent boy-girl (or girl-boy) pairs and y be the number of adjacent girl-girl pairs. What is the expected value of $x-y$? Express your answer as a common fraction in reduced form.

