Topics \& Sample Problems

MC30F (AMC 10/12 Basic Fundamentals)

Contents

Part-II 3
MC30F Geometry 3
MC30F Number Theory 9

Part-II

MC30F Geometry

Chapter 1: Angles

- Angles (review)
- Inscribed angles in a circle, cyclic quadrilaterals

Sample Problem:

(Alec Sun) In regular nonagon (9-sided polygon) ABCDEFGHI, draw the circle that is tangent to $I A$ at A and $C D$ at C. What is the degree measure of minor arc $A C$?

Chapter 2: Special Triangles

- 30-60-90, 45-45-90, and 15-75-90 triangles
- Pythagorean triples

Sample Problem:

(Math Day at the Beach-2012-Team-1) Each of two congruent equilateral triangles with side s has center that is a vertex of the other triangle. What is the area of the overlap, in terms of s ?

Chapter 3: Similarity

- Similarity/congruence axioms (SSS, SAS, ASA, AA similarity)
- Power of a point, angle bisector theorem

Sample Problem:

(AMC10-2018-A15) Two circles of radius 5 are externally tangent to each other and are internally tangent to a circle of radius 13 at points A and B, as shown in the diagram. The distance $A B$ can be written in the form $\frac{m}{n}$, where m and n are relatively prime positive integers. What is $m+n$?

(A) 21
(B) 29
(C) 58
(D) 69
(E) 93

Chapter 4: Special Points

- Special points of a triangle (centroid, incenter, circumcenter, orthocenter)

Sample Problem:

(AMC12-2018-B13) Square $A B C D$ has side length 30. Point P lies inside the square so that $A P=12$ and $B P=26$. The centroids of $\triangle A B P, \triangle B C P, \triangle C D P$, and $\triangle D A P$ are the vertices of a convex quadrilateral. What is the area of that quadrilateral?

Chapter 5: Length-1

- Triangle inequality, Ravi substitution
- Pythagorean theorem, distance formula
- Stewart's theorem

Sample Problem:

(AMC12-2012-A12) A square region $A B C D$ is externally tangent to the circle with equation $x^{2}+$ $y^{2}=1$ at the point $(0,1)$ on the side $C D$. Vertices A and B are on the circle with equation $x^{2}+y^{2}=$ 4 . What is the side length of the square?

(A) $\frac{\sqrt{10}+5}{10}$
(B) $\frac{2 \sqrt{5}}{5}$
(C) $\frac{2 \sqrt{2}}{3}$
(D) $\frac{2 \sqrt{19}-4}{5}$
(E) $\frac{9-\sqrt{17}}{5}$

Chapter 6: Length-2

- Mass points considering levers/torque
- Ceva's theorem, Menelaus' theorem

Sample Problem:

(Lehigh MC-2014-27) Let $B E$ be a median of triangle $A B C$, and let D be a point on $A B$ such that $B D / D A=3 / 7$. What is the ratio of the area of triangle $B E D$ to that of triangle $A B C$? Express your answer as a common fraction in reduced form.

Chapter 7: Area-1

- Areas of simple shapes (triangle, certain quadrilaterals)
- Triangle area formulas (Heron's formula, $\mathrm{A}=\mathrm{rs}, \mathrm{A}=\mathrm{abc} / 4 \mathrm{R},(\mathrm{ab} \sin \mathrm{C}) / 2$

Sample Problem:

(AMC10-2014-B13) Six regular hexagons surround a regular hexagon of side length 1 as shown. What is the area of $\triangle A B C$?

(A) $2 \sqrt{3}$
(B) $3 \sqrt{3}$
(C) $1+3 \sqrt{2}$
(D) $2+2 \sqrt{3}$
(E) $3+2 \sqrt{3}$

Chapter 8: Area-2

- Area formula for a circle, sector
- Brahmagupta's formula
- Area of more complicated shapes involving circles and/or other polygons

Sample Problem:
(ARML-0000-Team-1) In $\triangle A B C, m \angle A=m \angle B=45^{\circ}$ and $A B=16$. Mutually tangent circular arcs are drawn centered at all three vertices; the arcs centered at A and B intersect at the midpoint of $\overline{A B}$. Compute the area of the region inside the triangle and outside of the three arcs.

Chapter 9: Trigonometry-1

- Definitions of \sin , \cos, tan, as well as \csc, sec, cot
- The unit circle
- Basic trig identities, Sum and difference formulas for $\sin , \cos , \tan (e . g . \sin (a+b))$

Sample Problem:

(UK MC-2010-Senior-14) The parallel sides of a trapezium (trapezoid) have lengths $2 x$ and $2 y$, respectively. The diagonals are equal in length, and a diagonal makes an angle θ with the parallel sides, as shown. What is the length of each diagonal?

(A) $x+y$
(B) $\frac{x+y}{\sin \theta}$
(C) $(x+y) \cos \theta$
(D) $(x+y) \tan \theta$
(E) $\frac{x+y}{\cos \theta}$

Chapter 10: Trigonometry-2

- Law of sines
- Law of cosines
- Ratio lemma, trig Ceva's theorem
- Solving algebra problems by trig substitution

Sample Problem:

(Hong Kong MC-2006-17) If a square can completely cover a triangle with side lengths 3,4 and 5, find the smallest possible side length of the square.

Chapter 11: Analytic Geometry

- Slope, equation of a line using slope-intercept or point-slope form, distance and midpoint formulas
- Reflections over lines in the coordinate plan
- Equation of a circle
- Shoelace formula

Sample Problem:

(AMC12-2006-B16) Regular hexagon $A B C D E F$ has vertices A and C at $(0,0)$ and $(7,1)$, respectively. What is its area?
(A) $20 \sqrt{3}$
(B) $22 \sqrt{3}$
(C) $25 \sqrt{3}$
(D) $27 \sqrt{3}$
(E) 50

Chapter 12: 3D

- Distance formula in 3D
- Area/volume of various 3D shapes (cube, prisms, cylinders, cones, spheres)
- Common 3D solids
- Euler's polyhedral formula

Sample Problem:

(HMMT Feb-2004-Guts-18) On a spherical planet with diameter $10,000 \mathrm{~km}$, powerful explosives are placed at the north and south poles. The explosives are designed to vaporize all matter within $5,000 \mathrm{~km}$ of ground zero and leave anything beyond $5,000 \mathrm{~km}$ untouched. After the explosives are set off, what is the new surface area of the planet, in square kilometers?

MC30F Number Theory

Chapter 1: Gauss Sums

- Sums of arithmetic sequences
- Sum of squares and sum of cubes formula
- Sigma notation

Sample Problem:

(Australian MC-2000-I22) The number 2000 is expressed as the sum of 32 consecutive positive integers. The largest of these integers is
(A) 33
(B) 42
(C) 77
(D) 78
(E) 79

Chapter 2: Primes \& Prime Factorization

- Definition of divisibility $(a \mid b)$
- Prime and composite numbers, Euclid's proof of the infinitude of primes
- Fundamental theorem of arithmetic
- Legendre's formula
- Prime number theorem, prime checking algorithms (optional)

Sample Problem:

(UK MC-2008-Senior-19) How many prime numbers p are there such that $199 p+1$ is a perfect square?
(A) 0
(B) 1
(C) 2
(D) 4
(E) 8

Chapter 3: Divisibility

- Divisibility by numbers 2-11 inclusive
- Various problems involving divisibility, prime factorization, etc.

Sample Problem:

(Richard Spence) Find the largest positive integer multiple of 11 whose digits are all odd and different.

Chapter 4: Number \& Sum of Divisors

- General formula for the number and sum of divisors of a positive integer n, given its prime factorization
- Perfect, abundant, and deficient numbers (optional)

Sample Problem:

(Lehigh MC-2006-32) Let S denote the set of all (positive) divisors of 60^{5}. The product of all the numbers in S equals 60^{e} for some integer e. What is the value of e ?

Chapter 5: Factoring Techniques

- Difference of squares
- Sum and difference of cubes; sum and difference of n-th powers
- Simon's Favorite Factoring Trick
- Sophie Germain identity
- Informal definition of an irreducible polynomial over the integers (e.g. $x^{2}+y^{2}$)

Sample Problem:

(Lehigh MC-2004-37) How many ordered pairs (x, y) of integers satisfy $\frac{1}{x}+\frac{1}{y}=\frac{1}{2}$? (Note that both positive and negative integers are allowed.)

Chapter 6: Number Bases

- Conversion between different number bases (emphasis on base $2,8,10$, and 16)
- Arithmetic in different bases
- Fast base conversion (e.g. binary to hexadecimal)

Sample Problem:

(AMC12-2012-B11) In the equation below, A and B are consecutive positive integers, and A, B, and $A+B$ represent number bases:

$$
132_{A}+43_{B}=69_{A+B}
$$

What is $A+B$?
(A) 9
(B) 11
(C) 13
(D) 15
(E) 17

Chapter 7: GCD \& LCM

- Definition of relatively prime
- Computing the GCD and LCM using the prime factorization
- Computing the GCD of two numbers using the Euclidean algorithm

Sample Problem:

(BMT-2013-Individual-5) Two positive integers m and n satisfy

$$
\begin{aligned}
\max (m, n) & =(m-n)^{2} \\
\operatorname{gcd}(m, n) & =\frac{\min (m, n)}{6}
\end{aligned}
$$

Find $\operatorname{lcm}(m, n)$.

Chapter 8: Modular Arithmetic

- Basic properties of the modulo (reflexive, symmetric, transitive, etc.)
- Proof of divisibility rules using modular arithmetic
- Modular inverses
- More advanced modulo calculations involving basic operations

Sample Problem:

(Metehan Ozsoy) What is the remainder when $(1+2+\cdots+49)^{49}$ is divided by 50 ?

Chapter 9: Fermat's Little Theorem

- Definition of reduced residue systems $(\bmod m)$
- Applying Fermat's little theorem to find the remainder when a power is divided by a prime

Sample Problem:

(BMT-2019-Team-2) Find the remainder when 2^{2019} is divided by 7.

Chapter 10: Euler Theorem

- Definition of the totient function $\phi(n)$
- Using the totient function on basic problems involving relatively prime integers
- Definition of Euler's totient theorem
- Demonstrating that Fermat's little theorem is a special case of Euler's totient theorem

Sample Problem:

(Richard Spence) What is the sum of all positive integers less than 720 which are relatively prime to 720 ?

Chapter 11: Chinese Remainder Theorem

- Applying the Chinese remainder theorem to more advanced modular arithmetic problems
- Directly computing solutions to systems of congruences
- Using the Chinese remainder theorem backwards

Sample Problem:

(Richard Spence) Find all 3-digit positive integers N such that the numbers $N, N+1$, and $N+2$ are divisible by 7,8 , and 9 respectively.

Chapter 12: Diophantine Equations

- Solving linear Diophantine equations of the form $a x+b y=c$
- Bézout's identity, using the reverse Euclidean Algorithm
- Chicken McNugget theorem
- Finding Pythagorean triples
- Using modular arithmetic to solve Diophantine equations, or to show there is no integer solution

Sample Problem:

(AIME-2012-II-1) Find the number of ordered pairs of positive integer solutions (m, n) to the equation $20 m+12 n=2012$.

